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We study in detail the interaction of electrons confined in one spatial direction in a
parabolic quantum well with longitudinal-optical (LO) phonons, in a tilted magnetic field.
The polaron correction to the electron levels and the polaron cyclotron mass are calculated
using second-order perturbation theory. We present analytic and numerical results for the
energy levels and the polaron cyclotron mass in dependence on the strength and the tilt angle
of the applied magnetic field. It is shown that the electron—phonon induced corrections of the
electron levels and, especially, the polaron cyclotron mass are very sensitive according to the
tilt angle. For the case of an in-plane magnetic field it depends on the ratio of the confinement
energy and the LO phonon energy whether cyclotron resonance results in a resonant
magnetopolaron or not.  © 1994 Academic Press, Inc.

I. INTRODUCTION

The development of epitaxial layer growth techniques and the advances in high-
resolution submicrometer lithography have initiated a broad range of fundamental
research activities in many fields of semiconductor physics. This progress makes it
possible to fabricate semiconductor nanostructures which are precise in atomic
scale and in which the carrier motion is quantum-confined in one, two, or three
spatial directions.

In quasi-two-dimensional (Q2D) systems, ie., heterojunctions and quantum
wells (QW), the carrier motion is quasi-free parallel to the heterointerfaces but,
according to the size-quantization, quantum-confined within a narrow channel
perpendicular to the heterointerfaces (growth-direction). Therefore, Q2D systems
are typified by an energy spectrum consisting of discrete levels in growth direction,
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the electric subbands, with typical energy separations of A48 =20-.-200 meV for
electrons and a free motion dispersion within the perpendicular plane.

One of the challenging topics of current interest involves systems of further
reduced dimensionality: Q1D quantum-well wires (QWW) and Q0D quantum dots
(QD). QWW’s and QD’s have been prepared by starting from Q2D systems
employing nanometer techniques or directly by molecular-beam epitaxy, using
macrosteps on semiconductor surfaces.

In the past few years, attention has been focused not only to the Q1D and QOD
systems but also on remotely doped parabolic quantum wells (PQW). PQW’s are
very interesting physical systems. In remotely doped wide PQW’s it is possible to
synthezise an almost three-dimensional electron gas with much weaker electron-
impurity interactions than in conventional doped bulk semiconductors [1-9].
Further, in wide PQW?’s, it might be possible to observe broken-symmetry ground-
states that have been predicted [10-12] for the three-dimensional electron gas at
low densities in an external magnetic field. Experimental work on PQW’s has been
done on magnetotransport [2-47, on far-infrared (FIR) optical spectroscopy
[5-7], and on photoluminescence excitation spectroscopy. It has been shown
theoretically [13, 14] that in an initial bare ideal PQW the FIR absorption spec-
trum is independent of the number of electrons in the well, and it is also indepen-
dent of the electron—electron interaction. Generalizing this result to the case of an
applied magnetic field in a general direction, long-wavelength FIR optical perturba-
tion can cause transitions only at the two frequencies that correspond to exact
excitations in the center-of-mass motion of the electron gas [14]. This is called the
generalized Kohn’s theorem. Experiments [5, 7] show the possibility of growing
PQW'’s that have optical spectra with two strong peaks. Extra peaks arise if depar-
tures from the ideal parabolicity of the initial bare potential are present. For the
case of zero magnetic field [15, 16] and for nonvanishing magnetic field [17] the
optical spectra have been calculated for wells that deviate from perfect parabolicity.

Usually, PQW’s are fabricated from polar semiconductors. In polar semi-
conductors optical phonons are present which interact with the electrons, quantum-
confined in the PQW’s. Hence, the energy levels of an electron are modified by
electron-phonon interaction (EPI). In a strong quantizing magnetic field the energy
levels are modified by polaronic effects in the following manner: (i) they are shifted
to lower energy; (ii) the slopes of the energy levels versus magnetic field are
changed because of the mass renormalization of the electron; (iii) the energy levels
do not cross the energy level formed by the lowest level plus one optical phonon
and hence a splitting of these two levels occurs; and (iv) the levels are pinned to
the energy of that virtual level (lowest level plus one optical phonon) in high
magnetic fields. The EPI renormalizes the electron energy and mass, induces a non-
parabolicity in the energy dispersion, and therefore forms a quasi-particle, the
polaron. The polaron mass is usually experimentally determined by cyclotron
resonance. In such an experiment the separation of adjacent energy levels is
measured as a function of the magnetic field B. Therefore, in polar semiconductors
the cyclotron resonance frequency w* =eB/m¥*, with m}* as the polaron cyclotron
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mass, is renormalized by the interaction of the electrons with the optical phonons.
Two different situations are commonly distinguished in 3D bulk and Q2D systems:
the nonresonant magnetopolaron in low magnetic fields (v, < w, ) and the resonant
magnetopolaron in quantizing magnetic fields if the cyclotron frequency w,
approximately equals the longitudinal optical phonon frequency w,. For the 3D
bulk and the Q2D magnetopolaron considerable work has been done.

Polarons have been extensively studied both theoretically and experimentally in
3D systems [18,19], including the magnetic field dependence of the electron—
phonon correction to the energy of the Landau levels [20]. To study
experimentally polaronic effects a very successful magneto-optical method is the
cyclotron resonance [21,22]. In general, polaronic effects in bulk semiconductor
systems are well described by one-polaron theories [22]. This is valid because
in undoped 3D semiconductors the electron density is usually relatively small
(~10"” cm~? in GaAs) which leads to a Fermi energy £, <k, T and, the electrons
satisfy Boltzmann statistics. The mostly used way to calculate the polaron correc-
tion to the cyclotron resonance frequency or mass is to calculate the polaron
correction to the energy levels of the electron where the EPI is usually treated
within a perturbation schema. This is justified because the electron-phonon
coupling strength is weak (for GaAs the coupling constant is « =0.07). Then the
cyclotron resonance frequency can be obtained from the energy difference between
two levels. There is still a different approach to calculate the polaron correction.
This is the calculation of the magneto-optical absorption spectrum. To calculate the
dynamical conductivity mostly the so-called memory function approach is used.
Larsen calculated the electron—phonon corrections of the two lowest Landau levels
in the weak-magnetic field limit and in the resonant case [23,20]. Lindemann
et al. [21] calculated the electron-phonon induced corrections of the lowest Landau
levels using an improved Wigner—Brillouin perturbation theory which gives the
correct pinning behaviour of the excited level. The influence of the intermediate
and strong EPI on the first two Landau levels is discussed by Larsen [20], Peeters
and Devreese [24]. Peeters and Devreese [25] calculated the Landau level
corrections using second-order perturbation theory for all Landau levels and
arbitrary magnetic field, but energies below the LO phonon continuum.

Theoretical model calculations [25-28] predict, that for an ideal 2D electron
system, the one-polaron effects should be enhanced in comparison to 3D systems
by factors 2-3. Das Sarma and Madhukar [26] calculated the polaronic Landau
level corrections in the resonant region w, =~ w, using the so-called resonance
approximation. Because of the complete quantized situation in Q2D systems there
is no phonon continuum and hence, the splitting of the cyclotron-resonance line is
observable. Further, Larsen [27] and Das Sarma [28] studied the 2D weak-coupl-
ing polaron in the presence of a small magnetic field. Peeters and Devreese [25]
extended these studies to arbitrary magnetic fields and all Landau levels. Polaron
effects in Q2D electron systems have been observed in many cyclotron resonance
experiments on GaAs-Ga, _, Al As heterostructures [29-32] and on InSb inver-
sion layers [ 33, 34]. The available experimental data indicated Q2D polaron effects
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which were both reduced [29-32, 35], comparable [36], and enhanced [33, 37]
with respect to those in bulk systems. However, in most Q2D systems used in these
experiments the 2D electron channel has a finite width and the electron density
is typically ~10"...10"2cm 2% corresponding to a 3D electron density of
~10"...10" cm ~—*. The resulting Fermi energy fulfils E,» kT and the electrons
satisfy Fermi-Dirac statistics. Therefore, 2D one-polaron theories are not
necessarily valid. It has been realized that in order to explain theoretical the
experimental results it is necessary to take into account the non-zero width of the
Q2D celectron layer, ie., to consider both the wave function and subband effect
[27, 38-40]. Furthermore, it is shown to be necessary to take into account many-
particle effects, like dynamical screening of the EPI and Landau-level occupation
effects arising from Fermi-Dirac statistics. Both, the finite width of the electron
channel [38-40] and the many-particle effects [41, 42] reduce the strength of the
EPI. The up to now developed theory [42] has been successful in describing the
energy dependence of the cyclotron effective mass in GaAs heterostructures at low
temperatures and in magnetic fields up to 20T. Besides in cyclotron resonance
experiments, Q2D polaron effects have been observed also in resonant tunneling
[43]. Because semiconductor microstructures, such as heterostructures and quan-
tum wells, are layered semiconductor systems, the spectrum of the optical phonons
consists of confined LO phonons and interface phonons [44]. The effect of
these Q2D phonons on the cyclotron resonance is calculated [45], but up to now
not observed. Especially for InSb the conduction band nonparabolicity becomes
important in the polaron physics [38, 34, 46].

It was shown very recently for Q1D systems [47] that it depends on the ratio
of the confinement energy to the phonon energy, whether a resonant
magnetopolaron case is possible or not. This is also true for Q0D magnetopolarons
[48]. It is found [48] that the polaronic effects increase as the dimensionality 1s
reduced.

In this paper we investigate the influence of the EPI on the electron energy levels
of PQW’s in a tilted magnetic field. Further, we calculate the polaron cyclotron
mass. The electron-phonon correction is calculated within second-order perturba-
tion theory for arbitrary magnetic fields. Numerical results are presented for
Ga, Al As PQW’s with Ga, Al As barriers (x < y).

II. ENERGY LEVELS IN A TILTED MAGNETIC FIELD

The unperturbed system, a single electron confined in an ideal parabolic
quantum well in the z-direction in the presence of a quantizing magnetic field
B= (0, Bsin 8, B cos 0), tilted at an angle & with respect to the z-direction in the
y—z plane, is described by the Hamiltonian

1

H,=> (p+eA) + V(x), (1)

e
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where we ignore the Zeeman spin-splitting. In this equation m, is the effective
conduction band-edge mass, A is the vector potential with B=Vx A, V(x)=
V(z)=m,Q2%z%/2 is the parabolic confinement potential and the electron charge is
—e. For the vector potential we use the gauge A=(zsin @ —ycos ©,0,0) B. The
single-particle wave function is

x| ¥)=Y(x)= e xP(y, 2), (2)

X

where we have applied Born—von Karman periodic boundary conditions in the
x-direction and k, is the electron wave vector component in this direction. We sup-
pose spin degeneracy, but omit the spin eigenvalue and coordinate. Using this wave
function in the Schrédinger equation of the Hamiltonian, given in Eq. (1), it reads

hz 62 62 m, '
{Em—e [ki _a_yz_é?] t3 [w?y®cos® @ + (2% + w?sin® @) 2]

—tk . [ycos @ —zsin @] —m,w?yz sin O cos @} D(y,z2)=EDP(y, z), (3)

where w,.=eB/m, is the cyclotron frequency.

To solve this partial differential equation it is necessary to remove the term o yz
by a linear transformation. This simplification of the Hamiltonian is possible
through a change of the coordinates y — y" and z — z’ corresponding to a rotation
of the coordinate system y—z of an angle «, with respect to the y-axis [49, 507]:

y=y'cosa,—z'sina,, z=y'sina,+2z cosa,.

The rotation angle «, is obtained from the condition that the term oc yz must
vanish. Under this condition we obtain

@, = ! arc tan w; sin 26 4)
T2 Q2 —w2cos26 |
After this transformation the Schrédinger equation reads
hz 2 62 02 me 2,,12 2,12
{572z |+ 5 Lo o
_hkch[vyy,-*_vzz’]}¢(y,’ ZI)=‘§¢()", Z,), (5)
with
, 1|:1 ®?—Q?%cos 260 ]
vei=—|1—
r2 Vol + Q% —2020Q% cos 20
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and
1 w?— 0% cos 20
v3=*[1 ] (6)
V0l + Q% - 2022 cos 26
The frequencies w, and w, are given by
o,={3[o?+ Q27— (0! +Q*—202Q% cos 20)"?]}'72, -

.= {}[0? + Q>+ (0} + Q* - 202Q* c0s 20)2] } .

Introducing the quantities /2=y,/J and /2=y,[] with y, =w /0, and .= 0, /0.,
where /2 =#/(m,w.) is the magnetic length, Eq. (5) has the form

h2k2 hz 62
X —p2— Zewi v -V, )?
{2me [ ”y I‘tz 2m a /2+ (,U (y kx)
R 7 m,
g a0l = 2, 00, 2) = 80y ), ®)

where Y, =p,/ ikx and Z, =p,l2k, are the center coordinates of a shifted two-
dimensional harmonic oscillator with the displaced centre at Y, and Z, . Here
p,=7,v, and u,=7y,v,. Because l-yi—uf=0 is valid, we obtain the following
eigenenergies of a single electron in a PQW in the presence of a tilted magnetic
field:

Ev,n, =0 (N, + 1)+ ko (N, + 1),  N,N.=0,1,2, ... 9)

The corresponding single-particle wave function is

1
(XN, Noyko ) =¥uy v (X)) = N e by (V' —Y, ) Byl —Z,), (10)
with
y' =ycosa,+zsina,, Z'=—ysina,+zcosa,
and

1

AT
y: hd
1 ! 2 1 4
xexp| =55 (V' = Vo) |Hy, | 7 (/= Yi) |, (1)
» ¥y

1

Oyl —Z)= ———_ZN’NZ ] n”zlz

1 1
xexp[—il—?(z’—zkx)zjl Hy, lil— (z’—ka):l. (11b)
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H (&) 1s the Hermite polynomial. Let us consider explicitly the two special cases
of a perpendicular quantizing magnetic field (@ =0°) and of an in-plane quantizing
magnetic field (@ =90°). For ® =0° the eigenvalues are

En v, =hw (N, +3)+h2(N_+3) (12)

and the corresponding single-particle wave function is given by

o ok (X) == €% B, (y— Y,) Di2), (13)

X

where now /,=/, and I.=I, and, therefore, Y, =I/3k, and Z, =0 with
12 =h/(m, Q).

Since the energy eigenvalues &) v, are independent of the quantum number &, for
all angles @ #90°, each energy level is degenerated. For a finite system the allowed
values of the quantum number .k, are separated by 2n/L, so that the total number
N, of k, values which belongs to the same energy &y, y, is

Ny=—A; A=L.L, (14)

The degeneracy factor is identical to the number of flux quanta (&, = k/e) within
the area A.

This degeneracy is lifted for the special case of an in-plane quantizing magnetic
field (@ =90°). For this case we obtain

2.2 212
Evlk,, k SR ha | N 1 15
N:( X3 y)_ 2’71 +2m()+ CU(,< z+2> ( )
and
1 .
¥ vk, (X) = —= OB (2 — 7, ), (16)
z ¥ \/Z z x

where @, = (w?+ 2%)"? is the hybrid frequency, #=m(&,./Q)* is the magnetic-
field dependent kinetic mass, and now /2= #/(m,®,) which results in the centre
coordinate Z, =7v./2k, with 7, =w./®,. Therefore, for © =90° the discrete quan-
tum number N_V changes to the quasi-continuous wave vector component k, and
the degeneracy according &, is lifted. Note, that the quasi-classical electron motion
in the x~y plane now becomes anisotropic.

In Figs. la—g the unperturbed energy levels denoted by (N, N,) of the states
IN,, N,, k,»> for one electron in a perfect PQW are plotted as a function of the
magnetic field for different angles & of the tilted magnetic field using the material
parameters for GaAs. For the confinement frequency Q/w, =0.5 is used, where w,
is the frequency of the longitudinal-optical (LO) phonon.
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The special case of & =0° is plotted in Fig. la. It is seen that for B =0 the discrete
subband structure &£, arises according to the size quantization in z-direction. For
B#0 the electron motion in the x—y plane also is quantized. As the result of this
magnetic quantization the discrete Landau levels & of each size-quantized level
&y, arise. For the perpendicular case (& =0°) the magnetic and size quantization
are independent. Following, the Landau levels &, are independent from the size-
quantized levels &y, resulting in a possible level crossing for certain magnetic fields.

If one tilts the magnetic field with respect to the z-axis (see Fig. 1b) then the
magnetic quantization in the plane perpendicular to the magnetic field direction
and the size quantization couple with the result that the level crossing now is lifted
[4, 5,51]. This is called resonant subband-Landau level coupling (RSLC). For the
special case of a perfect parabolic confinement in the z-direction most of the level
crossing points are retained. Only for such magnetic fields where the cyclotron
frequency w, is equal to the confinement frequency € is the level crossing lifted and
anticrossing occurs. From Figs. Ib to 1f it is seen that with increasing angle @ the
resonance split gaps increase. Further, it is seen from Figs. la to 1g that for @ =0°
each size-quantized level has its own ladder of Landau levels independent from the
others. Tilting the magnetic field with respect to the z-axis each size-quantized level
has a ladder of hybrid levels. For instance, the energy level (1, 0) hybridizes with
(0, 1). With increasing angle the splitting of the hybrid levels increases and the
width of the ladder is lowered. That means, the energy difference between the
hybrid levels of each size-quantized level &y, is narrowed (see Fig. If for & =85°).
For the in-plane case (Fig. 1g) the energy levels represent mixed subband-Landau
levels (see Eq. (15)) with a magnetic field-dependent energy separation 48 =Ad,
similar to the energy levels of a parabolic QWW (see, for instance, Ref. [47]).
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FIG. 1. The unperturbed energy levels (N,, N,;n,), composed of an electron in the energy level
(N,, N.) and n LO phonons with the momentum #q and the energy #iw,, as a function of the magnetic
field in a PQW with a confinement frequency of Q/w, =0.5 for different angles €. The thin line
corresponds to the unperturbed level (0,0;1,).
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The character of these hybrid levels changes with the increasing magnetic field from
subband-like to Landau-like levels. For the in-plane case the magnetic field is in the
y-direction and quantizes the electron motion in the z-direction. In the y-direction
the electron motion becomes quasi-free with typical quadratic dispersion. Without
the parabolic potential in the z-direction the quantized motion in the x—z plane
would result in the Landau levels &y = Aw. (N + 1). These levels are changed due to
the presence of V(z)=m,Q2°2%/2 to the mixed subband-Landau levels &, (k,)=
#*%k2/(2m) + hd (N, + 1) accompanied by a lifting of the degeneracy according to
the wave vector component k.. In a classical picture, the term #%k2/(27) arises
from the electrons which skip along the two edges of the potential due to the con-
finement potential and the Lorentz force.

If one includes the EPI in the consideration then the question arises, what is the
effect of the EPI on these levels, especially on the resonance gaps. Furthermore, it
is important to know how the cyclotron polaron mass changes in dependence on
the strength of the magnetic field and in dependence on the tilt angle of the
magnetic field with respect to the z-axis. In the next section we give an answer to
these important questions.

II1. ELECTRON-PHONON INTERACTION

If an electron is placed in a polar semiconductor then it polarizes its surroun-
dings. This dielectric polarization is connected with the vibration of the solid in an
optical mode. Because only long-wavelength optical phonons are accompanied by
large electric dipole moments and, hence, by large polarization fields, only these
phonons interact with the electrons. Therefore, to describe the dielectric polariza-
tion, the crystal lattice is treated as a continuum. The dielectric continuum model
is the basis of the polar or Frohlich type of EPI [52]. This type of EPI describes
the coupling of the macroscopic electric field with the charge of the electron. In a
3D bulk polar semiconductor the electrons only interact with the LO phonons
[52], but in layered systems of polar semiconductors the electrons interact with
modified LO and interface phonons [44, 53, 547. For simplicity we will assume that
the electrons inside of the PQW only interact with 3D bulk LO phonons. Neglect-
ing the effects arising from the z-dependent varying Al content of the host material
Ga, _ Al As, which produces the parabolic shape of the conduction band-edge of
the PQW, the Hamiltonian of the EPI is the standard Frohlich Hamiltonian [52]:

dnar (Fiw, )2\ 2 1
Ho= (T2 ) Ty e (af0) +af (<) (17)

with

1 e? <l 1> 1
o= —_———]
24negr, \&, &,/ hw,
the dimensionless 3D polaron coupling constant, r, = (A/2m,w,)"* as the corre-
sponding 3D polaron radius, ¢, and ¢, are the high frequency (optical) and the
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static dielectric constant of the semiconductor containing the electrons, respectively;
gy is the permittivity of vacuum; a,(q) and a; (q) are the phonon destruction and
creation operators, respectively; q=(q., q,, ¢.) is the 3D wave vector of the 3D
bulk LO phonon; and ¥V, is the volume of the sample. The Hamiltonian of the
magnetopolaron is given by

H,=H,+) fo(af(q)a(q)+3)+ He,. (18)
q

The first two terms represent the unperturbed electron and the LO phonon system,
H,, and H, = H,, is the electron—phonon interaction Hamiltonian.
The EPI forms from the electron in the presence of the LO phonons a new quasi-
particle, the polaron, composed of an electron and the surrounding phonon cloud.
The energy levels of an electron are shifted over 4E , in the case & <90° and
AE, (k,, k,) for &=90° by the interaction with the LO phonons:

Eyn,=ho (N, +3)+ha (N, +3)+ 4Ey 5, (19a)
Eyk., k ﬁ2k}2‘ hzk; hd | N ! AE, (k.. k 19b)
Nz( x> )') - 21 + 2me + ., < z + 2) + N:( X _v)' (

In this paper we only consider weakly polar semiconductors with z < 1. This is
the weak-coupling limit and so it is sufficient to consider perturbed states that
contain no more than one LO phonon. Therefore, the energy shift is calculated
using second-order perturbation theory. The energy shift of the level (N,, N,) in the
case @ < 90° and of the level (N_, k., k) for ®=90° is given by

x> Py

= IM ()1
AEy, v, =— Y ¥ —Ti (202)
NuN=0 a Dy
= My (@)
AE (ko k)= — 3 e (20b)

N,=0 q Df\;,% (qxs qy),
where the matrix elements are M:é‘z"(q) =(N},, N, ke—qe; 1| Hey IN,, N, k0>
and M. 5 (Q)=<Nik,—q..k,—q,; 1| H, N, k., k,;0,> The ket |N,, N, k,;n,>
=|N,, N., k.>®|n,> describes an eigenstate of H, composed of an electron in the
energy level (N,, N,) with a momentum #k, and n LO phonons with the momentum
#iq and the energy fiw, in the case @ <90°, whereas the ket [N,, k,, k,;n,> is an
eigenstate of H, for @ =90° composed of an electron in the energy level (N,) with the
momentum (fk,, #ik,) and n LO phonons with the momentum #q and the energy #w, .
The corresponding level we call the n-phonon unperturbed level or the unrenormalized
n-phonon magnetopolaron level as opposed to the renormalized level, the n-phonon
magnetopolaron level, containing » LO phonons. Using the state vectors given above
and the Hamiltonian, Eq. (17), the matrix elements are given explicitly by

4nar,(hw, ) 1N N
Ve g N, !
N,!

e

1M (a)? =

X le;‘ﬁ‘z”"”(a},)l2 afi Mzema | LN M2 (g )2 (21a)
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If’ 2 2 1 2 13 2 2 1 2
a,":?luy qx+;5qy 4 az=5”z qx+qu
y z

for the case ® <90° and

with

4nor ,(hw,)? 1N,

'MN",N‘(q)I % q N 'a:’zl sze~az ILNzl sz( z)'z (2lb)
G
with
12 2( 2 1 2)
a.=5 v \9+=4:
2 7\ 1=z

for ©=90°. Here N,,, =max(N,;,N,.), N,,,=min(N,,),N,.), and
> =q+q2+q2. L) () is the associated Laguerre polynomial.
The energy dominator in Eq. (20a) for @ < 90° is given by

ij =hw, +hw, (N, —N,)+ ko (N —N,) = dy v, (22a)
and in Eq. (20b) for the case & =90° by
k kv ﬁz 2
(qx’ qy)_th+_'—(qx qx)+ _2kvqy)
+hd (N, —N.)— Ay (k,, y) (22b)

where the values 4 y and 4, (k,, k,) depend on the type of the perturbation theory
which is used [21]: (i) 4y v, =0 (4 y,(k,, k,) =0) leads to the Rayleigh-Schrédinger
perturbation theory (RSPT); (ii) 4y v, =A4En n, (An k., k)= AEy (k,, k,)) results
in the Wigner—Brillouin pcrturbatlon theory (WBPT) and (ii1) 4 mn,=A4Eyn n —
AEETT Ay ko, k) =AEy (k. k,)—AESPT(0,0)) gives the 1mproved ngner—
Bnlloum perturbation theory (IWBPT), with A4ESFT (4ERSFT(0,0)) is the
weak-coupling electron—phonon correction to the e]ectron ground-state energy,
calculated within RSPT. For the ground state 4E ) °*T = AERTT (AEVPFT(0,0) =
AEFSPT(0,0)) is valid.

Introducing polaron umits in Eq. (20) (energies are measured in units of Aw, and
lengths are measured in units of the 3D polaron radius r,), one obtains for the case
e <90°,

4no * 1 1
AEy y = —— =
BT N% Z g’ 1+ 2N, — N,)+ 22N, = N,)— Ay »,

M Nyt— Nyp,,—ay Nyl Ny 2N 2'
* a e “|LY (a)l
N, Y YN !

¥
xa:/zanzzeﬂzz ]inl;sz(az)lz (23)
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2 2
# 1 e 1
we(5) (o) en(2) (Aee)

and A2=w,/w,, Al=0,jo,.
For the two special cases of a perpendicular magnetic field (€ =0°) and an
in-plane magnetic field (@ =90°) we obtain
(i) for ©=0° AEy , is given by Eq. (23) with a,=(1/43)(¢2+¢}) and
a,=(1/42)q:, where A=¢=w, /o, and A} =n=Q/w, (u,=1,u,=0).
(ii} For @ =90° it is valid that

with

e & 1
AE (ko k)= —— —
N: ) VG N;Z:O % q2
1
*
NZZ! zl — ¥z —dz zf — vz
A e LY ) 24)

with

2
V: 1
o= (%) (at+5:0)
and Al=0./w,.

It is well known that the RSPT describes the ground-state correction for w, — 0
quite well, but it fails for the excited states, since it is possible that the denominator
of Eq. (23) vanishes for certain w,. This is true because there exist always energy
levels (N,, N.;0,) crossing the energy level (0,0;1,) at that value wf, where the
condition w, =N, o, + N . is fulfilled. For & #90° such a level crossing takes
place independent of the ratio between w, and . But for © =90° the energy level
(N., k,=0,k,=0;0,), only under the condition that w, > N, £, crosses the energy
level (0,0,0;1,) at wf=[(w,/N,)*—L*]"2 Under the condition w; <N,Q no
level crossing occurs. Hence, the in-plane case of @ =90° is very similar to the case
of a parabolic QWW in a perpendicular magnetic field [47]. The only difference is
the additional free dispersion in the y-direction for the electron in a PQW.

If resonance occurs, the EPI leads to a splitting of the degenerated levels. The
levels are repelled from the level (0, 0; 1,) and pinned to the energy fiw, + Aw, /2 +
hw,/2+ AETT. Only the IWBPT gives the correct pinning behaviour.

In Figs. la to lg, in addition to the unperturbed electron levels (¥,, N.;0,), also
the unrenormalized magnetopolaron level (0,0;1,) is plotted for n=Q/w, =0.5.
From Figs. 1a to 1g it is seen that for & =0° the resonance of the level (1,0;0,)
with the level (0, 0; 1) is at w?=w, which defines the magnetic field B, =m, o, fe.
For this special case the subbands arising from the geometrical confinement in the
z-direction and the Landau levels arising from the magnetic confinement in the x—y

595/233/2-5
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plane are completely decoupled. For nonvanishing angle & #0° RSLC occurs. This
leads to the fact that now the resonance between the level (0, 1; 0,) and (0, 0; 1)
at of=w, Jol — Q% Jw? —Q%cos? @ <, oceurs if <o, is valid.

Experimentally one obtains information about the levels by cyclotron resonance.
In such an experiment one measures the energetic difference between the ground-
state and an excited state of the electron if the transition is dipole-allowed and
derives the corresponding polaron cyclotron mass in dependence on the strength of
the magnetic field and the angle ©. The dipole-allowed single-electron transitions
are determined by the matrix elements of the dipole operator p= —ex of a single
electron. If one chooses the direction of the incident radiation and the direction of
the magnetic field to be equal for any angle with 0° <@ <90°, both transitions
(0,0;0,)—(1,0;,0,) and (0, 0;0,) — (0, 1;0,) can be excited. This is true due to the
RSLC arising from the coupled electron motion perpendicular and parallel to the
PQW. Hence, both harmonic oscillators are excitable by an incident FIR radiation
that is directed along the direction of the magnetic field with the result that this
radiation is absorbed at ®, and o, if one neglects the EPL. Contrary to the case
0° < ® < 90° discussed above, for a perpendicular magnetic field (@ =0°) only the
transition (0, 0;0,) — (1, 0;0,) can be measured and for an in-plane magnetic field
(€ =90°) only the transition (0,0,0;0,)— (1,0,0;0,) is measurable. The other
transitions are not dipole-allowed.

Therefore, it is possible, using cyclotron resonance, to measure the transitions
(0,0;0,) - (1,0;0,) and (0, 0; 04— (0, 1; 0,) and to determine the energy dif-
ference and the polaron cyclotron mass for these transitions.

Here, we will investigate the influence of the EPI in dependence on the magnetic
field B for both dipole-allowed transitions Ey, — E,y and Eo — E,,. Hence, it is
necessary to calculate the energy shifts AEy,, 4E,,, and A4E,.

Transforming the sum over q into an integral and converting the denominator of
Eq. (23) by the integral

1
NN,
DN;NZ

- fo diexp(—D V1), (25)

where Dx’:xy> 0 must be fulfilled, we obtain

27z

dEg= — s [ dt o= - )t
00 — 27[2 o

* —asdha—exp(—220 42 (7 — (/321 — exp(— 420)) g2
* dqye b4 P ¥y qy dqze z P z q;
—®

- X

w 1
*f dq. _2__2_36,—[(;13./%)(1 —eRp(— A + (/AN —exp(— il gL (26)
—© qx + qy + 9.
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In Eq. (26) the sums over N, and N are performed exactly. Now the integral over
g. can be calculated and polar coordinates are introduced in the g,—gq. plane,
4,=q,cos ¢, g, =q, sing, and g, = (¢} +¢2)"*, with the result that

2 e /2 0
AEg=~=[Tdte - e [Vdg [T dg, enierfel Joq, ) (@7)
T Y0 0 0
with
2 2 Ty 2
{e—cos* @ g, —sim o
b0=[—’7—(1—exp(—ﬂ.il‘))+-—iz—(l—cxp(—/lit))il
and
2 2
=§—;(l—exp( -+ /f—i(l—CXP(—iit)),
y Z

where erfc(x) is the complementary error function. According to the three possible
different cases for &, we finally obtain

NN
VN

by>0,

b0=0’

%INQ-H

o [=¢} n/2
AEy, = — =33 J. dte‘(lvdm)’J\ do <
n 0 o

arc tan \/ —by/c, by < 0.
\ V/ —bo
(28)
Thus the ground-state energy correction is given by a two-dimensional integral.

It is interesting to consider the special cases of the perpendicular magnetic field
(@ =0°) and of the in-plane magnetic field (€ =90°) explicitly. For & =0° it is
possible to perform the integral over ¢ analytically with the resuit that
fi= 1 N/

E=n,

1
\/_
\/__arcsmd c—Sflfe €<,

. A

(29)
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where

1 1
=—(1—e""), ==(1—e"*)
e . ( e z ( )
For the in-plane magnetic field (& =90°), we obtain the expression

AEO(k,w k») 2a2 J. dIEA“ ot D)1

«© 2,.2 .2 2 a2 2 2
*J’ dg, e~ 0RO+ AL 1) =0 )+ 21 =3ty
e ¢}

e~ lq% + 2tk gy

—aahu—e it (7
*J,% dq. ¢ Lxdq‘ P +ql+q> (30)
This expression can be expanded in a power series of k% and k2: AE (k. k)=
AEy(0,0) + d4E(k ., 0)/0k2|, _o* k24 4E(0, k,)/0k’ |k, =0 * ki+ .--. The com-
ponents of the magnetopolaron effective mass tensor m* and m} for motion in the
x—y plane are related to the second-order terms in the standard manner. The
magnetopolaron ground-state correction is given by the term 4E,(0, 0):

1
AE(0,0) = mf die 1RO fF(arcsin\/gz/z,yz) (31)
g:

with
g.=(1/A2)(e '+ A2t —1)

and F(a, b) is the elliptical integral of the first kind.

It gives a deeper insight into the effect of the EPI in a tilted magnetic field if one
discusses the energy renormalization AEy ,_in the limit of a weak magnetic field.
If{=w,./w, <1 is valid, nondegenerated perturbation theory, i.e., RSPT, is a good
approximation and, therefore, one has 4y », =0.

If one expands the ground-state renormalization 4E, for the special case of a
perpendicular magnetic field (@ =0°) in a power series according to &, we obtain
for the EPI correction from Eq. (29) for small magnetic fields:

o = 1 —
- d -t ) _ " 3 0
AEy s J;) te {\/E;arcsm\/g,,/tf
2
+ [4—tz/—2 arcsin \/g,/t —/f, t/4g,,:| ¢!
3 2Tt +2
+[ (916-'—5/{” arcsin /g, /t \/— 9(6 = /) ]52+(9(é3)} (32)

with g, =1~1,.
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For the in-plane magnetic field (@ =90°) we obtain for the EPI correction for
small magnetic fields from Eq. (31):

a je o)
A4Ey(0,0)= ——U—ZJ dte"{ arcsin /g, /t JtE°
n \] \/—_
1 /2 1 ny,
+ d l:——.———(——'—’—l+2cot2 )
4/t L P L T=sin® plg,/1) ¢

1+sin ¢/ t
L femlrsnevel <"f" 1+2cot2qo):|£2+(9(§4)}.
s @ 1—sing /g,/t \ &
(33)

The zero magnetic field limit of 4Ey|, ., for @ =0° given in Eq. (32), and of
AEy(0,0)|, ., for ®=90°, given in Eq. (33), yield the same result, which desribes
the ground-state renormalization of a Q2D polaron in a PQW.

Now, we consider the energy shifts AE,, and AE,. Transforming again in
Eq. (23) the sum over q into an integral, converting the denominator by the
integral, Eq. (25), and performing the sums over N, and N, it follows that

B = =2 [" dremt- o
10 27_[2 o

* —apdha —ep(-2m et [ — (/A —exp( - 420 ¢
*I dqye ¥ pl—Aytl 4y dq,e z pt=4:t14;
oo

*Jm g b —ept— 2oy + /A —exp(— 320 &
—w  grt 4yt al
L st sinn2 (B +452 ginn2 B0 (34
L gin L :
MRST 7 2 S ) 4 )

Now we can perform the integral over ¢, and introduce polar coordinates again in
the ¢, — g, plane. Then Eq. (34) reads

AEm=*%jwdze*“*dmwf: d<pf dg,

0

x[eb""z**erfC[\/qu](l—aoqzl)'*"\a/—‘leblqi‘h} 35)
¢

with
by=c—by,

4

ag = ;2

At
—; sinh? (—5—) (12 —cos? @)
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and
a=—==3 smh
\/_ AZ 2

The integral over ¢, can be performed analytically with the final result:

R

(! ‘/;+\/b‘°(1+ﬂ) %+/c ‘/;a‘ bo>0,
bofc — bo) \/-bl

2b,
n/2
*J do __2_<1_29_+_\/_;_ﬂ’ bo=0,
V]

arctan‘/—bo/c<1+2—b—;> b:zz\_/;o ibl by<0.
1

2
\/ —bo

(36)

Again, a two-dimensional integral remains.
For AE,, Eq. (36) is also valid but with a change of the values of ¢, and a, by

4 A%t
ap= Psmhz( 5 )(uf—sinz(p)

and

4 2 /12
al = T g—% h2 ( 2 )
w5z
For the special case of the perpendicular magnetic field (® =0°) we obtain

AE g = — mf dr e\t = 4w

fx/f}:f_: [m \/ﬁt/ﬁ(l _2(fnh¢—fc ) 2f§h\/\fé_——fj’ >,
1 he
7—f—<1+3f5> ¢=n,

: \/ff_fn hz hé frl
[arcsm \/E (1+2(f,5*f,,)> 2f5\/1—'¢_:7,,]’ E<n,

*
N

fé_fn
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with

4 &
hf = E Sll’lh2 E,

resulting from A4E,,, given in Eq. (36), if one takes the limit & — 0°. Here, we do

not consider 4E,, for the special case of a perpendicular magnetic field, because the

transition (0, 0;0,) — (0, 1;0,) is not dipole-allowed for & =0°. For the in-plane

magnetic field (9 90°) the result reads for k, =k, =0,

© 1 X
4E(0,0)= —n—?/i L dte““’“o"””{ﬁ F(arcsin \/g./t,7.)

x(l—hz>+h2 i } (38)

Zgz 2gz (t—gz)(t_})ggz)
with
4 ik
h, =5 sinh? -~ -,

z

Expanding Eqs. (37) and (38) in a power series according to £, we obtain the
weak-magnetic field expressions for 4E,, (@ =0°) and 4E,(0, 0) (€ =90°). For the
difference of the energy shifts of the first excited energy level and the ground-state
energy level, the weak-magnetic field expression calculated in RSPT for the special
case of the perpendicular magnetic field (© =0°) reads

a [ ! 1 .
AElO*AEm=—WIO dte"{-zg—[ﬁarcsmqg,,/t—\/];]{‘
" "

t2
+ 357

n

[-\3’/’—;_” arc sin \/z,/1+ /7, (32, +f,,)] £y (9(53)}. (39)

For the in-plane magnetic field (©® =90°) the corresponding result is

AE (0, 0) — AE(0, 0)

= mf dré= jdq)

*{[h,, 1 h \/_ 1+s1n(p\/g_]

—(g,/t)sin* ¢ 283/251D(P 1—sing/g,/t

1 [h, 2 e ntf,
— B2 (yreoth T T
+4n2[ 1—(gﬂ/t)sin2<p<" oy,
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(nf,—g,/t)sin’ ¢ +2(g,/t) cos’ ¢
1—(g,/t)sin® ¢ )

h\/—( Othﬂ_%)lnl+sin(p(g,,/t)
g““”/2 sin ¢ 2 1 —sin (g, /t)

&n

hf (ﬂlf,, 1+200t2) 1+sm<p,/g,,

283/251n<P gn I —sing \/g,/t

h’7 _____1_._____* %_ 2 2 4
+—2E,;1—(g,,/t)sin2<p (g,, 1+ 2cot (p)]é + O )}. (40)

In Figs. 2a to 2c we have plotted the EPI corrections to the levels Ey, E,, and
E,,, using IWBPT, with the following parameters for GaAs: ¢, = 10.90, ¢, = 12.87,
fiw, =36.17meV, a =007, r,=3.987nm, and m,=0.06624m,, respectively, which
are strictly valid only on the bottom of the potential of the PQW.

From Fig. 2a it is to be seen that with increasing magnetic field B and decreasing
angle @ the ground-state energy correction increases. The dependence on the
strength of the magnetic field for low magnetic fields is linear for a perpendicular
magnetic field, Eq. (32), but quadratic for the in-plane magnetic field, Eq. (33). The
EPI correction to the energy level E,,, shown in Fig. 2b, goes to the same value for
all tilt angles ® for decreasing magnetic field and is identical to that of the ground
state E,, for B=0. This can be seen from Eq.(39), valid for @ =0° where
AE o — AEy vanishes for w,=0. This is true due to the fact that the energy level
(1,0;0,) for low magnetic fields is the first excited Landau level for all angles ©.
On the other hand, the EPI correction to the energy E,,, shown in Fig. 2c, goes to
identically the same value for all tilt angles. But this value is different from the
ground state correction 4E,. This can be seen explicitly from Eq. (40) which is
valid for the case @ =90°. Here, we have for zero magnetic field a nonvanishing
difference of the corresponding EPI corrections AEy, and 4E;. This is due to the
fact, that E,, (or E, for @ =90°) is the first excited subband energy level for the
vanishing magnetic field. The renormalization of different subbands due to the EP1
depends on the value of the quantum number N,.

The strong increase of the renormalization of the excited energy levels E,,
(for ® =0°, where the Landau levels and the subbands are independent) and Eg,
(for ® >0°) with increasing magnetic field are due to the EPI-induced resonance
coupling to the energy level (0, 0; 1,). Additionally, the anticrossing of the energy
levels (1,0;0,) and (0, 1;0,) for nonvanishing but small tilt angle & (see Figs. 2b
and 2c for ® =1°) leads to strong changes of the EPI corrections for 4E,, and
AE,, near the crossing point w,.= 2. This anticrossing effect is smeared out with
increasing tilt angles (see, for instance, & =25°).
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Fic. 2. The polaronic corrections 4Ey/hw, (a), 4E o /hw, (b}, and 4E,, /hw, (c) as a function of
the magnetic field in a PQW with a confinement frequency of Q/w, = 0.5 for different angles €. The thin
solid lines correspond to the special cases of perpendicular (€ =0°) and in-plane (€ =90°) magnetic
fields.
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In Figs. 3a to 3e the calculated magnetopolaron levels are plotted. The thin solid
lines show the unperturbed levels (N,, N,;0,), the thin dashed line the unperturbed
level (0, 0; 1,), and the heavy solid lines are the corresponding magnetopolaron levels,
including the EPI. The magnetopolaron levels are calculated from Eqs. (28) and (36).
For vanishing tilt angle © only the Landau level (1, 0;0,) is excitable by FIR radia-
tion, but not the subband level (0, 1; 0, ). Therefore for a perpendicular magnetic field
(& =0°) only the two magnetopolaron levels (0, 0;0,) and (1, 0;0,) are shown in
Fig. 3a. Resonance of the excited level (1,0;0,) with the one-LO phonon level
(0,0; 1,) occurs at o®=w,. This EPI-induced resonance leads to a splitting of the
excited level (1, 0;0,) and the level (0, 0; 1) at the resonance point wf=w,. This
second type of resonant level splitting, caused by EPI, is called resonant
magnetopolaron level coupling (RMPLC). In Fig. 3 only the lower energetic branch
of the two split energy levels (E,, —» E L) is calculatcd The higher energetic branch
E} is not calculated here, because the condition D" N) > 0 restricts the calculations

z

to energies below Aiw, + fiw, /2 + fiw_ /2 + AET" in IWBPT. It is well known that in
3D semiconductors the upper branch is located in the phonon continuum which has
a threshold energy E,, = fiws, + Aw_/2 + AE X3P, In the here considered case we have
for @ # 90° a complete quantized state and, hence, there is no phonon continuum. But
for ®=90° a phonon continuum exists with the threshold energy E,, =#hw, +
hd./2 + AEFSFT(0, 0). Hence, if one wants to calculate the upper branch and the
splitting of the two branches E 3 at the resonance it is necessary to calculate Eq. (23)
without using Eq. (25). One p0551b111ty for this calculation is the so-called resonance
approximation. This means that one includes in the calculation of the energy shifts
A4E,, at the resonance only the main contributing term of the sum in Eq. (23) which
is the term with N, = N, =0 [56]. Hence, for example, in the case @ =0° we have
fov
AEy= — .

filw, —w. )~ 4y 41

We=wy

with
chno ZIM o(@)?

(\/—< il lnl_‘l—”> O<n<l
t=n\" JT—n U
o 2
2 n<§3 ’7=17 (42)

3/2
x(h_%) (arcsin /(1 — D)=/ (n— D)), n>1.

The energy shift 4E |, at the resonance results in a splitting of the level E g into the
levels Ef =&+ 4E %, according to

—AEy/2+ 52+ AEL, /4, IWBPT,
AEE = o 00
s or WBPT,

00

(43)
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and following the splitting é,,=AE [, —4E, is
Jn (1 n -1 —n)

l—n _ﬁ/l—n ﬁ
dro=2a"2/2//7{ /213, n=1, (44)

3/2 _1 / __1
/(__’7 ) (arc sin /——’7 vz ), n>1,
n—1 n "

if we use WBPT. Hence, the splitting is oc «'/2, which is the same proportionality
as for the 2D resonant magnetopolaron [25] as opposed to the «** dependence
of a 3D resonant magnetopolaron [55]. For an infinitesimally thin PQW

In O<n<l,
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FiG. 3. The first magnetopolaron levels Ey,, E,o, and E,, (thick solid lines) as a function of the
magnetic field in a PQW for Q/w, =0.5 and different angles €. The corresponding unperturbed energy
levels are plotted by thin solid (0, 0;0,), (1,0;0,), (0, 1;0,) and dashed (0, 0; 1,) lines.



238

HAUPT AND WENDLER

c 2.0
() =45
-3
3
2
~
2
=
0.0 0.2 0.4 0.6 0.8 1.0
wefwy,
d 2.0r
(d) e=s65°

En, N, /twr

0.2 0.4 0.8

0.0 0.6 1.0
we fwr,
e 2.0
(e) ©=90°
-~
3
"2
~
2
13

wofwr

FIG. 3—Continued.
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(n=9Q/w, — o) we obtain the limit of the strict 2D resonant magnetopolaron [25]
for which the splitting is equal to 6,, = (n'?«)!/2 This resuit can be extended [57]
to the case of a tilted magnetic field (0° < @ <90°).

If one applies a weakly tilted magnetic field (see Fig. 3b, @ = 5°), additionally the
energy level (0,1;0.) can be excited by cyclotron resonance. Because of the
anticrossing of the pure electron levels at w,= the magnetopolaron levels
(1,0;0,) and (0, 1;0,) change their character for small magnetic fields (w, <)
from Landau-like and subband-like for high magnetic fields (w, > 2) to subband-
like and Landau-like levels. Therefore, the level (0, 1;0,) is resonant with the LO
phonon for a cyclotron frequency @ = w, (w3 — Q%)"*/(w? — Q% cos® @)"? which
is a little bit lower than in the case @ =0° (w” = w,). This resonance decreases for
increasing tilt angle €. For the in-plane magnetic field ® =90° (Fig. 3¢) only the
mixed subband-Landau level (1,0, 0;0,) is exitable by cyclotron resonance. In this

(El 0~ Eopo )/th

'(].0 0.2 0.4 0.6 0.8 1.0
wefwy,

Fi1G. 4. Energy difference between the energy levels £, — Ey, and Ey, — E,, for the perturbed states
(magnetopolaron, thick solid lines) and the unperturbed states (electron, thin solid lines) for a PQW for

Q/w, =0.5 and different angles 6.
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case resonance occurs for the cyclotron frequency equal to w® =,/w? — Q2 which
is equal to the resonance frequency in the case of a parabolic QWW [47].

In cyclotron resonance experiments the transitions of electrons between the
energy levels, which are in polar semiconductors magnetopolaron levels, are observed.
Hence, the transitions between the plotted magnetopolaron levels of Figs.3 are
detected. The energy differences E;, — Ey, and E,, — E4, are plotted in Figs. 4a to
4e. The heavy solid lines represent the renormalized energy difference and the thin
solid lines are those of the unperturbed levels. Figures 4a-e show that the transition
energies measured in cyclotron resonance experiments are reduced due to the EPI,
especially for increasing magnetic fields. Near the resonance to the LO phonon the
transition energy is pinned below the LO phonon energy #w,. This resonance,
occuring at @ =0° (Fig. 4a) for the transition (0,0;0,)— (1,0;0,), changes at
6 >0° (Figs. 4b—e) to the transition (0, 0;0.) — (0, 1; 0,) due to the anticrossing of
the levels (1,0;0,) and (0, 1;0,) which is seen from Fig. 3. Note that for weak
magnetic fields the level (0, 1;0,) is a subband-like energy level. Different subband
levels are differently renormalized by the EPL This can be seen explicitly from
Eq. (40) for the special case of the in-plane magnetic field, where the difference of
the energy renormalization 4E, — AFE, remains finite for the vanishing magnetic
field. The frequency of the transition (0, 0;0.) — (0, 1;0,) is decreased already for
vanishing magnetic fields, contrary to the other transition. According to the small-
ness of this difference (x~0.004 x w,) this effect cannot be drawn in Figs. 4b-e.

IV. POLARON CYCLOTRON MaAss

In the cyclotron resonance experiment the optical transitions £, — £, and
Ey — E,, can be used to determine the cyclotron mass m¥*. From Figs. 1a and 3a
it can be seen that for ® =0° only the transition E,, — E,; yields the resonant
magnetopolaron case at ®® =w, (B= B,). In the general case of tilted magnetic field
for © #0° the situation is changed (see Figs. 1b to 1f and 3b to 3d). Because of the
anticrossing of the levels £,, and E,, at w = due to RSLC, now the transition
Ey — E,; yields the resonant magnetopolaron case. For the in-plane magnetic field
the corresponding transition E,(0, 0) - £,(0, 0) yields the resonant magnetopolaron
(Figs. 1g and 3e). If one neglects for the moment the EPI the transition &, — &), is
detected at the transition frequency w, = (&, — &y)/A which is connected to the
cyclotron frequency o, =[2w}(w?}—2%)/(2w’ - Q*(1 +cos 20))]1"? according to
Eq. (7). Including the EPI the transition frequency w, and the cyclotron frequency w.
is renormalized to w} and w !°*. Hence, the polaron cyclotron mass m** = eBjw [°*
is given by

1 AdE—A4Ew\> (1)
0w ﬁ(y—y+—————é °°) -(E) (1 +cos(20))

= ) (45)
m, 1 AE,,—A4Eq \/( 1 AE,,— AE(,O)z (7])2
2 g2t 00 g7 mrreey (2
\/_ (yy * f ) Vy " i é
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F1G. 5. Polaron cyclotron mass of the Q2D magnetopolaron versus magnetic field in a PQW for a
perpendicular (& =0°) magnetic field and different confinement frequencies 2 (a): the thin solid lines
correspond to the special case of zero confinement frequency, i.e., 3D magnetopolaron; and of infinite con-
finement frequency, i.e, 2D magnetopolaron and for an in-plane (@ =90°) magnetic field and different
confinement frequencies Q (b): the thin solid line corresponds to the special case of zero confinement
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frequency, i.e., the 3D magnetopolaron.

In a similar way the corresponding polaron cyclotron mass m2'* = eB/w?'* for the

transition Eq, — F,, is calculated to be

01 %
m _

\/2 (L,M)Q_ <z>2 (1+cos(20))
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with @2'* = [20*}(w** — 22)/(2w** — Q%*(1 4+ cos 20))1"? and w* = (Ey — Eg)/h.
For the case of the perpendicular magnetic field (& = 0°) the transition Ey,— Eyq
yields the polaron cyclotron mass defined by

which is equal to the usual polaron cyclotron mass definition for 2D and 3D
magnetopolarons. For the second special case, the in-plane magnetic field
(@ =90°), the transition Ey(0, 0) — E,(0, 0) defines the polaron cyclotron mass:

* AE, —AE,\®* _AE,—A
’"le/\/u( E, °> 4245~ 4Ky (48)
m, ¢ 7:¢

The polaron cyclotron mass is shown in Figs. 5 and 6. The special case of the
perpendicular magnetic field (@ =0°) is plotted in Fig. 5a for different values of the
confinement energy #£2, using Eq. (47) for the case of the IWBPT. It is seen that
with increasing magnetic field the polaron cyclotron mass increases. This is a result
of the polaron induced nonparabolicity of the energy dispersion in absence of the
conduction band nonparabolicity. The strong enhancement of the polaron
cyclotron mass near the unperturbed level crossing at w® = w, is a consequence of
the pinning of the level E,, to the energy #w, +hw /2 +h2/2+ AESTT. For the
case of a perpendicular magnetic field and in the weak-magnetic field limit
{=w./w, <1, the expansion of the polaron cyclotron mass m* (Eq. (47)), in a
power series according to &, gives the result

mX 1 = Lt t .
=[1—amfo dte ’{Eg—”[—\/z:narcsm,/gn/t——\/};]éo
2

+ S—ZZ [\3/—;_” arcsin /g, /t + \/f—,, (g, +f,,)] Ny (9(62)}]”. (49)

For vanishing confinement 2 =0 one describes the polaron cyclotron mass of a 3D
magnetopolaron. This is obtained explicitly from Eq. (49):

me_ 2
- —1/<1—6<1+106+@(62))). (50)

€

e

In the case of a vanishing magnetic field this expression includes the special case of
the polaron mass m*/m,=[1 —a/6] ' of a 3D polaron [25]. But for 2 — oo, the
confining potential is infinitesimal thin and, therefore, we obtain the well-known
polaron cyclotron mass of a 2D magnetopolaron. In this case, Eq. (49) reads

m;"_ T 2 2
me_l/(l 8a(1+8§+(9(§ ))) (51)

595/233/2-6
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F1G. 6. Polaron cyclotron mass of the Q2D magnetopolaron versus magnetic field in a PQW for a
confinement frequency Q/w, =0.5 and for different angles & (a) m'"*; (b) m®'*; the thin solid lines
correspond to the special cases of in-plane and perpendicular magnetic field.

For a vanishing magnetic field, Eq. (47) gives the well-known polaron mass
m*/m,=[1—an/8] " of the 2D polaron [25].

In Fig. 5b the polaron cyclotron mass is plotted for the case of an in-plane
magnetic field (@ =90°) for different values of the confinement energy #AQ
calculated using Eq. (48). For small magnetic fields (B — Q) this mass increases with
decreasing magnetic field. In this case the quantization of the electrons motion in
z-direction arises from size- and magnetic-quantization. For B— (0 the quantum
confinement in z-direction of the structure results more and more from the quan-
tum-size effect of the parabolic potential. In this case the polaron corrections to the
energy levels are different for all levels including the case of vanishing magnetic
field. For a vanishing magnetic field the electron is purely confined due to the
parabolic potential. Therefore no mass connected with kinetic energy motion in this
direction exists. For ® =90° the denominator of Eq. (48) has a zero for a certain



CYCLOTRON RESONANCE OF QUANTUM WELLS 245

magnetic field, which depends on the geometrical confinement frequency £.
Only for larger magnetic fields as this above-defined critical one, is it possible to
determine the polaron cyclotron mass by a cyclotron resonance experiment. This
physical behaviour of m}* for @=90° is very similar to the case of Q1D
magnetopolarons in QWW’s [47].

If one tilts the angle @ of the magnetic field with respect to the z-axis one obtains
two branches, m!%* and m?'*, of the polaron cyclotron mass. These two branches
are plotted in Figs. 6a and 6b for different tilt angles €. Due to the anticrossing
of the excited magnetopolaron levels for small tilt angles 6 >0° at
o~ [20l(w]—2%)/(20] — 2*(1 +cos 26))]"/? we obtain a drastic increase of the
polaron cyclotron mass m!®* (Fig.5¢) for w,>[20X(w2—Q%)/(2w2—-Q%(1+
cos 20))1Y2 With increasing tilt angle © there is a decrease of the polaron
cyclotron mass m!®* especially for high magnetic fields due to the absence of the
resonance with the LO phonon of this excited level (1, 0;0,) for tilt angles & >0°
(cf. Figs.3b-e). The polaron cyclotron mass m?'* shows the typical resonance
enhancement near o, = [203(w} — 2%)/(2w’— Q*(1 +cos 20))]'? which is shifted
to lower values with increasing tilt angle @ according to the @-dependence of this
resonance point. The divergency of the polaron cyclotron mass for lower magnetic
fields according to the subband-like character of the considered transition is also
shifted to lower magnetic fields with increasing tilt angle @ and reaches the limit for
the in-plane magnetic field (Fig. 5b) for & =90°.

V. SUMMARY

We have calculated the polaron corrections to the electron energy levels and the
cyclotron mass of magnetopolarons confined in a PQW in a tilted magnetic field.
Our results are valid for zero temperature and arbitrary magnetic field strength. It
is shown that in a tilted magnetic field the one-electron levels split at v, = due
to the RSLC. A further level splitting arises from polaronic effects as a result of the
RMPLC. Without EPI the energy levels (N,, N,;0,) can cross the level (0,0; 1,).
But the EPI causes a resonance splitting and, therefore, the degeneracy is lifted.
Whereas this resonance always occurs for @ # 90°, for the in-plane magnetic field
case (®=90°) it depends on the ratio of the confinement energy and the LO
phonon energy if this resonance occurs or not. The case of an in-plane magnetic
field plays a special role. This case shows some similarities with magnetopolarons
in quasi-one-dimensional QWW’s [47]. For @ # 90° the energy spectrum is entirely
discrete and the levels are macroscopic degenerated according to the electron
momentum #k .. But for the case @ =90° anisotropic quasi-two-dimensional sub-
bands arise and the degeneracy is lifted. We have shown that for @ #90° the
polaronic level splitting is oc «'/? in the resonance approximation which is the same
dependence as for 2D magnetopolarons in a perpendicular magnetic field. The here
obtained results, based on a one-polaron theory, are valid for perfect parabolic
potentials built up from semiconductor materials with a parabolic conduction band.
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To improve on these results one has to include in the calculation a possible
nonparabolicity of the conduction band (band structure effect), the nonparabolicity
of the confining potential and, if many electrons are present, occupation and
screening effects. It is well known [14] that in the absence of the electron—phonon
interaction in a cyclotron resonance experiment the PQW absorbes FIR radiation
only at two frequencies, independent of the number of electrons in the well, and
also independent of the electron—electron interaction. This result, the so-called
generalized Kohn’s theorem will be violated by the EPI developed in this paper.
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